
On the discrete Frobenius–Perron operator of the Bernoulli map

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 4945

(http://iopscience.iop.org/0305-4470/39/18/012)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 4945–4953 doi:10.1088/0305-4470/39/18/012

On the discrete Frobenius–Perron operator of the
Bernoulli map

Zai-Qiao Bai

Department of Physics, Beijing Normal University, Beijing 100875, People’s Republic of China

E-mail: phybai@163.com

Received 30 November 2005, in final form 15 March 2006
Published 19 April 2006
Online at stacks.iop.org/JPhysA/39/4945

Abstract
We study the spectra of a finite-dimensional Frobenius–Perron operator
(matrix) of the Bernoulli map derived from phase space discretization. The
eigenvalues and (right and left) eigenvectors are analytically calculated, which
are closely related to periodic orbits on the partition points. In the degenerate
case, Jordan decomposition of the matrix is explicitly constructed. Except for
the isolated eigenvalue 1, there is no definite limit with respect to eigenvalues
when n → ∞. The behaviour of the eigenvectors is discussed in the limit of
large n.

PACS numbers: 02.10.Ud, 02.50.−r, 05.45.Ac

1. Introduction

The Bernoulli map, F(x) = 2x (mod 1), is a basic pedagogical model of chaotic dynamics.
In this simple system, the exponential sensitivity to the initial condition is obvious and the
exponential proliferation of periodic orbit (PO) can be easily identified. When turning to
statistical description of dynamics, however, the situation is far from obvious. The evolution
of probability densities is described by the Frobenius–Perron (F–P) operator, which transforms
a distribution ρ to Ûρ with

(Ûρ)(x) =
∫ 1

0
δ(x − F(x ′))ρ(x ′) dx ′ = 1

2

[
ρ

(x

2

)
+ ρ

(
1 + x

2

)]
. (1.1)

The equilibrium state ρ0(x) = 1 is an eigenvector of Û with eigenvalue λ0 = 1, while the
eigenvalues within the unit circle determine how fast the equilibrium state is attained. As an
important property of F–P operators, the spectra of Û are crucially controlled by the function
space on which it acts [1, 2]. For example, if the function space is L2[0, 1], then any z within
the unit circle is an eigenvalue with infinite multiplicity, which indicates that the approaching
to equilibrium can be arbitrarily slow. In contrast, if Û is restricted to the space of analytic
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functions, there are only countable non-zero eigenvalues λn = 2−n, n = 0, 1, 2, . . ., and the
eigenvector corresponding to λn, denoted by Bn(x), is known as the Bernoulli polynomial,

B0(x) = 1 B1(x) = x − 1
2 B2(x) = x2 − x + 1

6 · · · . (1.2)

Moreover, the corresponding left eigenvectors in this case are generalized functions, i.e.
δ-function and its derivatives. From the discrete eigenvalues and (right and left) eigenvectors,
a generalized spectral decomposition of Û can be constructed, by which the exponential
decorrelation of polynomial observables can be conveniently calculated [3–5].

In order to achieve a better understanding of the above intriguing facts, in this paper
we consider the finite-dimensional approximation of Û . The reduction is based on a
straightforward discretization of phase space, i.e.

[0, 1] =
n−1⋃
j=0

[
j

n
,
j + 1

n

]
≡

n−1⋃
j=0

Ij .

By assuming ρ(x) = ρj if x ∈ Ij , we identify ρ(x) with a n-dimensional vector
ρ = [ρ0, ρ1, . . . , ρn−1]T ≡ ∑

j ρj ej and represent Û by a n × n matrix Un defined as

(Un)i,j = 1
2 (δj,2i + δj,2i+1 + δj+n,2i + δj+n,2i+1) i, j = 0, 1, . . . , (n − 1). (1.3)

For example,

U2 = 1

2

[
1 1
1 1

]
, U3 = 1

2


1 1 0

1 0 1
0 1 1


 , U4 = 1

2




1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1


 . (1.4)

We point out that Un for even values of n is the transfer matrix of the well-known binary graph,
which has been studied in many fields, e.g. combinatorics [6], quantum map [7] and quantum
chaos [8–10].

Note that UT
n �= Un if n > 3 and hence Un generally has complex eigenvalues. The

equilibrium state ρ0 = 1√
n

[1, 1, . . . , 1]T is both the left and right eigenvector of Un, i.e.

Unρ0 = ρ0 and UT
n ρ0 = ρ0. In this paper, we shall calculate all the eigenvalues and (left and

right) eigenvectors of Un and discuss their behaviour in the limit n → ∞.

2. Eigenvalue

We start from the trace relation,
n∑

j=1

λk
j = tr

(
Uk

n

) =
n−1∑
i=0

(
Uk

n

)
ii

= 1

2k

n−1∑
i=0

m
(k)
i , k = 1, 2, . . . , (2.1)

where m
(k)
i ’s are integers defined as follows. The action of Fk on Ii can be split into two

consecutive steps. The first step is stretching, i.e. Ii → [
2k i

n
, 2k i+1

n

] ≡ I
(k)
i , and the second

step is folding, i.e. rewinding I
(k)
i to [0, 1]. The integer m

(k)
i counts the number that I

(k)
i coves

Ii in the course of rewinding, which obviously equals to the number of fixed points of Fk in
Ii . Because Fk has exactly 2k fixed points and a fixed point at i

n
(0 < i < n) contributes to

both m
(k)
i−1 and m

(k)
i , we have

tr
(
Uk

n

) = 1 +
1

2k

n−1∑
i=1

δFk( i
n
), i

n
. (2.2)
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For a t-period PO contained in Pn ≡ {
i
n

∣∣0 < i < n
}
, its contribution to the above boundary

correction of trace is

t

2k

∞∑
q=1

δk,qt =
t∑

j=1

(
1

2
ei 2πj

t

)k

. (2.3)

Inserting equations (2.2) and (2.3) into equation (2.1), we have
n∑

j=1

λk
j = 1 +

∑
Oα∈Pn

tα∑
j=1

(
1

2
ei 2πj

tα

)k

, (2.4)

where Oα represents a PO and tα is its period. Therefore, except for λ0 = 1, the non-
zero eigenvalues of Un are directly connected to PO in the finite set Pn of partition points.
Specifically, a t-period PO produces t eigenvalues λ = 1

2 ei 2πj

t , j = 1, 2, . . . , t . Based on this
fact, we conclude that

(1) if λ �= 1 is an eigenvalue of Un, then |λ| = 1
2 or 0,

(2) U(2l+1) has no zero eigenvalue, i.e. it is not degenerate,
(3) U2q (2l+1) and U(2l+1) have identical set of non-zero eigenvalues; hence U2q (2l+1) have

(2q − 1)(2l + 1)-fold zero eigenvalues.

3. Eigenvector

3.1. Non-degenerate case

Assume n is an odd number. In this case, each point in Pn belongs to a PO and Un has n − 1
eigenvalues on the circle |λ| = 1

2 . We first consider the right eigenvectors. The calculation
can be greatly simplified by taking advantage of the relation Û Ŝ = 1

2 ŜÛ , where Ŝ is a linear
operator defined by

(Ŝf )(x) =
∫ x

0
f (x ′) dx ′ − c, (3.1)

where the constant c = ∫ 1
0 (1 − x ′)f (x ′) dx ′, which ensures that

∫ 1
0 (Ŝf )(x) dx = 0. Note

that Ûf = λf implies that Û Ŝf = 1
2 ŜÛf = λ

2 Ŝf , i.e. Ŝ transforms one eigenvector of Û to
another with halving eigenvalue. Suppose Oα ≡ {

α1
n
, α2

n
, . . . ,

αtα

n

} ⊂ Pn is a PO, then

φα,k(x) =
tα∑

j=1

e−i 2πkj

tα δ
(
x − αj

n

)
, (0 � k < tα) (3.2)

is an eigenvector of Û with λ = ei 2πk
tα . Of course, φα,k does not belong to the domain of Un,

however, Ŝφα,k does since

Ŝδ
(
x − i

n

)
=

( i

n
− 1

) i−1∑
j=0

ej +
i

n

n−1∑
j=i

ej ≡ Hi . (3.3)

The n−1 vectors H1,H2, . . . ,Hn−1, are linearly independent and they expand the orthogonal
complement of ρ0. Therefore,

Eα,k = Ŝφα,k =
tα∑

j=1

e−i 2πkj

tα Hαj
�= 0 (3.4)

is a right eigenvector of Un with λ = 1
2 ei 2πk

tα .
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Now we consider the left eigenvectors. Let Di = ei − ei−1, i = 1, 2, . . . , (n − 1).
Obviously, 〈Di , ρ0〉 ≡ DT

i ρ0 = 0 and 〈Di ,Hj 〉 = δi,j . Therefore, Di’s also expand the
orthogonal complement of ρ0. For Oα ⊂ Pn, define

Ẽα,k = 1

tα

tα∑
j=1

ei 2πkj

tα Dαj
, (0 � k < tα) (3.5)

then we have 〈Ẽα,k, Eβ,j 〉 = δα,βδk,j . This orthogonal relation implies

I = ρ0ρ
T
0 +

∑
Oα⊂Pn

tα−1∑
k=0

Eα,k ẼT
α,k, (3.6)

which immediately leads to the spectral decomposition of Un,

Un = UnI = ρ0ρ
T
0 +

∑
Oα⊂Pn

tα−1∑
k=0

1

2
ei 2kπ

tα Eα,k ẼT
α,k. (3.7)

This decomposition shows Ẽα,k is a left eigenvector of Un, i.e. UT
n Ẽα,k = 1

2 ei 2kπ
tα Ẽα,k .

3.2. Degenerate case

Assume n = 2q(2l + 1). In this case, besides 2l + 1 non-zero eigenvalues, which are identical
with that of U2l+1, Un has (2q − 1)(2l + 1) zero eigenvalues. On the other hand, Un has only
n/2 linearly independent eigenvectors corresponding to λ = 0. Therefore, Un can only be
transformed to the direct sum of some Jordan blocks if q > 1. For simplicity, we consider here
only n = 2q . The general case can be viewed as, in a certain sense, the direct product of this
most degenerate case (n = 2q) and the non-degenerate case (n = 2l + 1) (see the appendix).

In the case of n = 2q , it is convenient to employ the binary representation of integers
j = ∑q−1

l=0 sl2l and write ej = e(sq−1 . . . s1s0) ≡ e(S). The action of Un on e(S) is

Une(S) = 1

2

1∑
k=0

e(FkS)

where FkS = sq−2 · · · s1s0k, k = 0, 1. Then we take the Hadamard transformation: for a
binary sequence � = σq−1 · · · σ1σ0, define

φ(�) = 2−q/2
∑

S

(−1)�Se(S) (3.8)

where �S = ∑q−1
i=0 σisi . The 2q Hadamard vectors build a orthonormal basis, i.e.

〈φ(�), φ(�)〉 = 

q−1
i=0 δσ iσi

≡ δ�,� (3.9)

and hence

I =
∑
�

φ(�)φ(�)T . (3.10)

Un takes a very simple form, the Jordan canonical form in fact, in this basis,

Unφ(�) =
{

φ(F0�) (σq−1 = 0)

0 (σq−1 = 1).
(3.11)
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Figure 1. Evolution of B2(x) given by Un. B2(x) is approximated by a n-dimensional vector

ϕ = ∑n−1
k=0[B2(

2k+1
2n

) + 1
12n2 ]ek and ||ϕ|| ≡

√
1
n
〈ϕ, ϕ〉. Note that although the three matrices have

distinct eigenvalues, they give the same short time decay ||ϕ(t)|| ∼ 4−t .

Table 1. Jordan decomposition of U16.

Basis of subspace Jordan block

{φ(0000)} J1(1)

{φ(1000), φ(0100), φ(0010), φ(0001)} J4(0)

{φ(1001)} J1(0)

{φ(1011)} J1(0)

{φ(1101)} J1(0)

{φ(1111)} J1(0)

{φ(1010), φ(0101)} J2(0)

{φ(1110), φ(0111)} J2(0)

{φ(1100), φ(0110), φ(0011)} J3(0)

Consequently,

Un = UnI = Un

∑
�

φ(�)φ(�)T =
1∑

σq−2=0

· · ·
1∑

σ1=0

1∑
σ0=0

φ(σq−2 · · · σ1σ00)φ(0σq−2 · · · σ1σ0)
T .

(3.12)

This decomposition completely describes the spectral property of Un, which can be
summarized as

U2q ∼ J1(1) ⊕ Jq(0) ⊕q−1
k=1 2q−k−1Jk(0), (3.13)

where Jk(λ) denotes the Jordan block, Jk(λ)i,j = λδi,j +δi,j−1, 1 � i, j � k. Take q = 4 as an
example, we have U16 ∼ J1(1)⊕ J4(0)⊕ 4J1(0)⊕ 2J2(0)⊕ J3(0) (for detailed explanation,
see table 1).

4. Large n limit

So far we have calculated the eigenvalues and eigenvectors of Un for arbitrary n. The result
deeply relies on the arithmetical properties, especially parity, of n and there is no simple limit
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(a)

(b)

Figure 2. Some right eigenvectors of U8093. 2λ = −1, ei 2π
8092 , ei 2π

7 and i for (a)–(d) respectively.
Complex eigenvectors are represented by paths in the complex plane.

in respect of eigenvalues or eigenvectors when n → ∞. Therefore, it is interesting to examine
how Un approaches Û in the limit of large n.

We first consider the evolution given by Un. Due to the exponential expanding of small
cell, one can only expect that Un can mimic Û within a short time τ ∼ log2 n. This requirement
does not conflict with the fact that Un and Û have different spectra. For example, if n is odd,
the spectral decomposition equation (3.7) implies

ρ(t; n) = Ut
nρ(0) = 〈ρ0, ρ(0)〉ρ0 +

1

2t

∑
Oα⊂Pn

tα−1∑
k=0

ei 2ktπ
tα 〈Ẽα,k, ρ(0)〉Eα,k. (4.1)

This expression suggests that ρ(t; n) approaches the equilibrium state as 2−t when t → ∞.
However, for bounded t, different behaviour can be produced when n → ∞. In this case,
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(c)

(d)

Figure 2. (Continued.)

all eigenvalues of Un, except for λ = 1, are densely located on the circle |λ| = 1/2. This
results an effective continuous spectrum, which can lead to complex short time dynamics, e.g.
ρ(t; n) ∼ λtρ(0) with |λ| �= 1/2. Similarly, if n = 2q , the (n − 1)-fold zero eigenvalue does
not mean that ρ(t; n) will immediately approach ρ0. In this case, the diversity of short time
dynamics is caused by the Jordan blocks with increasing dimensionality (see figure 1).

Then we consider the eigenvectors. There is an eigenvector with λ = 1/2 defined as

1

n

∑
Oα⊂Pn

Eα,0 =
[

1 − n

2n
,

3 − n

2n
, . . . ,

n − 3

2n
,
n − 1

2n

]T

, (4.2)

which tends to B1(x) when n → ∞. This is the only eigenvector which has a smooth limit.
We should distinguish two cases in studying the limit behaviour of eigenvectors. In the first
case we consider the eigenvectors associated with a fixed PO. When n → ∞, according to
equations (3.4) and (3.5), the right eigenvectors are uniquely determined by the PO and hence
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remain fixed while the left eigenvectors approach to singular functions, i.e. if Oα ⊂ Pn0 and
n = (2l + 1)n0,

n2Ẽα,k ∼ 1

tα

tα∑
j=1

ei 2πkj

tα δ′
(

x − αj

n0

)
(4.3)

for l 
 1. In the second case we simply let n → ∞ and study all its eigenvectors. Then PO’s
with increasing period must be taken into account. Write Eα,k = [c0, c1, . . . , cn−1]T , according

to equation (3.4), the components are connected by cj = cj−1+
j with 
j = e−i 2πmk
tα if j = αm

or 0 if j

n
/∈ Oα . The chaotic nature of F(x) implies that a long PO generally occupies the

partition points in an apparent random order. Consequently, the components of Eα,k , as long
as k �= 0, can be locally viewed as a kind of Brownian motion in the complex plane. This is
most evident in the situation when Pn consists of a single PO1 (see figure 2). Again, the limit
of thus eigenvectors cannot be smooth functions. This is consistent with the fact that Û has
only one smooth eigenfunction with |λ| = 1/2.

5. Conclusion

In this paper we have demonstrated with the Bernoulli map that the eigenvalues and
eigenvectors of the discrete F–P operator can be extracted from the information of periodic
orbits. In a more profound manner, this is believed to be true for general chaotic dynamical
systems [2]. In addition, we have found that the naive expectation that a steady spectral density
should be obtained when the partition of phase space is infinitely fine fails in this case. The
reason can be ascribed to the spectral instability of non-Hermitian operators from the viewpoint
of mathematics. It has been generally proved for expanding maps that only the isolated
spectrum of the finite matrices outside a disc |λ| = λc (λc = 1/2 in our case) is stable [11, 12].
Due to this fact, our study suggests it is impossible to give a definite description of long time
behaviour in the framework of phase space discretization.
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Appendix. Jordan decomposition of U2q(2l+1)

In this appendix we consider the Jordan decomposition of U2q (2l+1). For the sake
of convenience, we adopt the outer product of vectors in the discussion. Let A =
(a1, a2, . . . , ar )

T and B = (b1, b2, . . . , bs)
T , A ⊗ B is a rs-dimensional vector defined as

A ⊗ B = (a1b1, a1b2, . . . , a1bs, a2b1, a2b2, . . . , a2bs, . . . , arb1, arb2, . . . , arbs)
T . (A.1)

One can readily verify that

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) ≡ A ⊗ B ⊗ C, (A.2)

and

〈A′ ⊗ B ′, A ⊗ B〉 = 〈A′, A〉〈B ′, B〉. (A.3)

1 The statement that Pn consists of a single PO is equivalent to that, in terms of number theory, 2 is a primitive root
mod n. A necessary condition for this is that n is a prime number of the form of 8k + 3 or 8k + 5.
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The construction of Hadamard vectors is an example of vector outer product. In fact, define

φ(0) = 1√
2

[
1
1

]
and φ(1) = 1√

2

[
1

−1

]
(A.4)

we have

φ(σq−1σq−2 · · · σ0) = φ(σq−1) ⊗ φ(σq−2) ⊗ · · · ⊗ φ(σ0). (A.5)

We can rewrite the action of Un in terms of vector outer product. Let V = [v1, v2, . . . , vk]T

be a k-dimensional vector, it can be easily verified that

U2kφ(σ ) ⊗ V = δ0,σ V ⊗ φ(0), U2kV ⊗ φ(0) = (UkV ) ⊗ φ(0) (A.6)

and similarly

UT
2kV ⊗ φ(σ) = δ0,σ φ(0) ⊗ V, UT

2kφ(0) ⊗ V = φ(0) ⊗ (
UT

k V
)
. (A.7)

Equation (A.6) imply rank(U2k) = k and rank
(
U 2

2k

) = rank(Uk). Consequently, we have

rank
(
Um

2q (2l+1)

) =
{

2q−m(2l + 1) (0 < m � q)

2l + 1 (q < m).
(A.8)

Note that the Jordan blocks of U2q (2l+1) involve only λ = 0, according to theory of linear
algebra, the above relation uniquely determines the form of its Jordan decomposition. In the
following, we shall construct a basis that realizes this decomposition.

For a binary sequence S = sq−1 · · · s1s0 �= 0q , we cut it at the right of the leftmost 1 and
split it into two segments S = S1S2. Define

ψ(S, E) = φ(S1) ⊗ E ⊗ φ(S2) ≡ S1ES2,

where E is a (2l + 1)-dimensional vector. For example, ψ(1, E) = 1E, ψ(10, E) =
1E0, ψ(01, E) = 01E, ψ(11, E) = 1E1 and so on. It can be shown that

〈ψ(S, E), ψ(S, E)〉 = δS,SE
T E .

Therefore, if we take E from an orthonormal basis of R2l+1, then the set of ψ(S, E) builds
an orthonormal basis of a (2l + 1)(2q − 1)-dimensional subspace H0, in which we have

U2q (2l+1)ψ(S, E) =
{
ψ(F0S, E) (sq−1 = 0)

0 (sq−1 = 1),

i.e. U2q (2l+1) takes the Jordan canonical form. Furthermore, E⊗φ(0q)’s expand the complement
(not orthogonal in general) of H0, where U2q (2l+1) is isomorphic to U2l+1.
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